Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2023.07.02.547368

RESUMO

The cell entry mechanism of SARS-CoV-2, the causative agent of the COVID-19 pandemic, is not fully understood. Most animal viruses hijack cellular endocytic pathways as an entry route into the cell. Here, we show that in cells that do not express serine proteases such as TMPRSS2, genetic depletion of all dynamin isoforms blocked the uptake and strongly reduced infection with SARS-CoV-2 and its variant Delta. However, increasing the viral loads partially and dose-dependently restored infection via a thus far uncharacterized entry mechanism. Ultrastructural analysis by electron microscopy showed that this dynamin-independent endocytic processes appeared as 150-200 nm non-coated invaginations and was efficiently used by numerous mammalian viruses, including alphaviruses, influenza, vesicular stomatitis, bunya, adeno, vaccinia, and rhinovirus. Both the dynamin-dependent and dynamin-independent infection of SARS-CoV-2 required a functional actin cytoskeleton. In contrast, the alphavirus Semliki Forest virus, which is smaller in diameter, required actin only for the dynamin-independent entry. The presence of TMPRSS2 protease rescued SARS-CoV-2 infection in the absence of dynamins. Collectively, these results indicate that some viruses such as canine parvovirus and SARS-CoV-2 mainly rely on dynamin for endocytosis-dependent infection, while other viruses can efficiently bypass this requirement harnessing an alternative infection entry route dependent on actin.


Assuntos
COVID-19 , Estomatite Vesicular , Transtornos Relacionados ao Uso de Substâncias
2.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2023.04.03.535004

RESUMO

The emergence of SARS-CoV-2 variants alters the efficacy of existing immunity towards the viral spike protein, whether acquired from infection or vaccination. Mutations that impact N-glycosylation of spike may be particularly important in influencing antigenicity, but their consequences are difficult to predict. Here, we compare the glycosylation profiles and antigenicity of recombinant viral spike of ancestral Wu-1 and the Gamma strain, which has two additional N-glycosylation sites due to amino acid substitutions in the N-terminal domain (NTD). We found that a mutation at residue 20 from threonine to asparagine within the NTD caused the loss of NTD-specific antibody binding. Glycan site-occupancy analyses revealed that the mutation resulted in N-glycosylation switching to the new sequon at N20 from the native N17 site. Site-specific glycosylation profiles demonstrated distinct glycoform differences between Wu-1, Gamma, and selected NTD variant spike proteins, but these did not affect antibody binding. Finally, we evaluated the specificity of spike proteins against convalescent COVID-19 sera and found reduced cross-reactivity against some mutants, but not Gamma spike compared to Wuhan spike. Our results illustrate the impact of viral divergence on spike glycosylation and SARS-CoV-2 antibody binding profiles.


Assuntos
COVID-19
3.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2023.01.17.524329

RESUMO

Aging is the primary risk factor for most neurodegenerative diseases, and recently coronavirus disease 2019 (COVID-19) has been associated with severe neurological manifestations that can eventually impact neurodegenerative conditions in the long-term. The progressive accumulation of senescent cells in vivo strongly contributes to brain aging and neurodegenerative co-morbidities but the impact of virus-induced senescence in the aetiology of neuropathologies is unknown. Here, we show that senescent cells accumulate in physiologically aged brain organoids of human origin and that senolytic treatment reduces inflammation and cellular senescence; for which we found that combined treatment with the senolytic drugs dasatinib and quercetin rejuvenates transcriptomic human brain aging clocks. We further interrogated brain frontal cortex regions in postmortem patients who succumbed to severe COVID-19 and observed increased accumulation of senescent cells as compared to age-matched control brains from non-COVID-affected individuals. Moreover, we show that exposure of human brain organoids to SARS-CoV-2 evoked cellular senescence, and that spatial transcriptomic sequencing of virus-induced senescent cells identified a unique SARS-CoV-2 variant-specific inflammatory signature that is different from endogenous naturally-emerging senescent cells. Importantly, following SARS-CoV-2 infection of human brain organoids, treatment with senolytics blocked viral retention and prevented the emergence of senescent corticothalamic and GABAergic neurons. Furthermore, we demonstrate in human ACE2 overexpressing mice that senolytic treatment ameliorates COVID-19 brain pathology following infection with SARS-CoV-2. In vivo treatment with senolytics improved SARS-CoV-2 clinical phenotype and survival, alleviated brain senescence and reactive astrogliosis, promoted survival of dopaminergic neurons, and reduced viral and senescence-associated secretory phenotype gene expression in the brain. Collectively, our findings demonstrate SARS-CoV-2 can trigger cellular senescence in the brain, and that senolytic therapy mitigates senescence-driven brain aging and multiple neuropathological sequelae caused by neurotropic viruses, including SARS-CoV-2.


Assuntos
Inflamação , Doenças do Sistema Nervoso , COVID-19 , Doenças Neurodegenerativas
4.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.12.27.521990

RESUMO

The SARS-CoV2 Omicron variant sub-lineages spread rapidly through the world, mostly due to their immune-evasive properties. This has put a significant part of the population at risk for severe disease and underscores the need for anti-SARS-CoV-2 agents that are effective against emergent strains in vulnerable patients. Camelid nanobodies are attractive therapeutic candidates due to their high stability, ease of large-scale production and potential for delivery via inhalation. Here, we characterize the RBD-specific nanobody W25, which we previously isolated from an alpaca, and show superior neutralization activity towards Omicron lineage BA.1 in comparison to all other SARS-CoV2 variants. Structure analysis of W25 in complex with the SARS-CoV2 spike surface glycoprotein shows that W25 engages an RBD epitope not covered by any of the antibodies previously approved for emergency use. Furthermore, we show that W25 also binds the spike protein from the emerging, more infectious Omicron BA.2 lineage with picomolar affinity. In vivo evaluation of W25 prophylactic and therapeutic treatments across multiple SARS-CoV-2 variant infection models, together with W25 biodistribution analysis in mice, demonstrates favorable pre-clinical properties. Together, these data endorse prioritization of W25 for further clinical development.


Assuntos
Síndrome Respiratória Aguda Grave
5.
preprints.org; 2022.
Preprint em Inglês | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202203.0101.v1

RESUMO

The COVID-19 pandemic is the biggest public health threat facing the globe today. Multiple vaccines have been approved, however the emergence of viral variants such as the recent Omicron, raises the possibility of booster doses to achieve adequate protection. In Brazil, the CoronaVac (Sinovac) vaccine was used, however it’s important to assess the immune response to this vaccine over time. This study aimed to monitor the anti-SARS-CoV-2 antibody responses in those immunized with CoronaVac and SARS-CoV-2 infected individuals. Samples were collected between August 2020 and August 2021. Within the vaccinated cohort, some individuals had history of infection by SARS-CoV-2 prior to immunization and others not. We analyzed RBD-specific and neutralizing- antibodies. Anti-RBD antibodies were detected in both cohorts, with a peak between 45-90 days post infection or vaccination, followed by a steady decline over time. In those with previous history of COVID-19, a higher, longer, more persistent response was observed. This trend was mirrored in the neutralization assays, where infection followed by immunization resulted in higher, longer lasting responses which were conditioned on the presence of levels of RBD antibodies right before the vaccination. This supports the necessity of booster doses of CoronaVac in due course to prevent serious disease.


Assuntos
COVID-19
6.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.01.11.475947

RESUMO

Coronavirus disease-2019 (COVID-19) is primarily a respiratory disease, however, an increasing number of reports indicate that SARS-CoV-2 infection can also cause severe neurological manifestations, including precipitating cases of probable Parkinson's disease. As microglial NLRP3 inflammasome activation is a major driver of neurodegeneration, here we interrogated whether SARS-CoV-2 can promote microglial NLRP3 inflammasome activation utilising a model of human monocyte-derived microglia. We identified that SARS-CoV-2 isolates can bind and enter microglia, triggering inflammasome activation in the absence of viral replication. Mechanistically, microglial NLRP3 could be both primed and activated with SARS-CoV-2 spike glycoprotein in a NF{kappa}B and ACE2-dependent manner. Notably, virus- and spike protein-mediated inflammasome activation in microglia was significantly enhanced in the presence of -synuclein fibrils, which was entirely ablated by NLRP3-inhibition. These results support a possible mechanism of microglia activation by SARS-CoV-2, which could explain the increased vulnerability to developing neurological symptoms akin to Parkinson's disease in certain COVID-19 infected individuals, and a potential therapeutic avenue for intervention.


Assuntos
Doenças Respiratórias , COVID-19 , Doença de Parkinson , Doenças Neurodegenerativas
7.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.01.11.475820

RESUMO

The complement system has been heavily implicated in severe COVID-19 with clinical studies revealing widespread gene induction, deposition, and activation. However, the mechanism by which complement is activated in this disease remains incompletely understood. Herein we examined the relationship between SARS-CoV-2 and complement by inoculating the virus in lepirudin-anticoagulated human blood. This caused progressive C5a production after 30 minutes and 24 hours, which was blocked entirely by inhibitors for factor B, C3, C5, and heparan sulfate. However, this phenomenon could not be replicated in cell-free plasma, highlighting the requirement for cell surface deposition of complement and interactions with heparan sulfate. Additional functional analysis revealed that complement-dependent granulocyte and monocyte activation was delayed. Indeed, C5aR1 internalisation and CD11b upregulation on these cells only occurred after 24 hours. Thus, SARS-CoV-2 is a non-canonical complement activator that triggers the alternative pathway through interactions with heparan sulfate.


Assuntos
COVID-19
8.
researchsquare; 2021.
Preprint em Inglês | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.pex-1559.v1

RESUMO

This protocol describes an ELISA-based procedure for accurate measurement of SARS-CoV-2 spike protein-receptor binding domain (RBD) neutralization efficacy by murine immune serum. The procedure requires a small amount of S-protein/RBD and angiotensin-converting enzyme-2 (ACE2). A high-throughput, simple ELISA technique is employed. Plate-coated-RBDs are allowed to interact with the serum, then soluble ACE2 is added, followed by secondary antibodies and substrate. The key steps in this procedure include: 1) serum heat treatment to prevent non-specific interactions, 2) proper use of blank controls to detect side reactions and eliminate secondary antibody cross-reactivity, 3) the addition of an optimal amount of saturating ACE2 to maximize sensitivity and prevent non-competitive co-occurrence of RBD-ACE2 binding and neutralization, and 4) mechanistically derived neutralization calculation using a calibration curve. Even manually, the protocol can be completed in 16 hours for >30 serum samples; this includes the 7.5 hours of incubation time. This automatable, high-throughput, competitive ELISA assay can screen a large number of sera, and does not require sterile conditions or special containment measures, as live viruses are not employed. In comparison to the ‘gold standard’ assays (virus neutralization titers (VNT) or plaque reduction neutralization titers (PRNT)), which are laborious, time-consuming and require special containment measures due to their use of live viruses. This simple, alternative neutralization efficacy assay can be a great asset for initial vaccine development stages. The assay successfully passed conventional validation parameters (sensitivity, specificity, precision, and accuracy) and results with moderately neutralizing murine sera correlated with VNT assay results (R2=0.975, n=25), demonstrating high sensitivity.

9.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.05.30.446357

RESUMO

SARS-CoV-2 has infected over 160 million people and resulted in more than 3.3 million deaths, and we still face many challenges in the rollout of vaccines. Here, we use the high-density microarray patch to deliver a SARS-CoV-2 spike subunit vaccine directly to the skin. We show the vaccine, dry-coated on the patch is thermostable, and delivery of spike via HD-MAP induced greater cellular and antibody immune responses, with serum able to potently neutralize clinically relevant isolates including those from the B.1.1.7 and B.1.351 lineages. Finally, a single dose of HD-MAP-delivered spike provided complete protection from a lethal virus challenge, demonstrating that HD-MAP delivery of a SARS-CoV-2 vaccine is superior to traditional needle-and-syringe vaccination and has the potential to greatly impact the ongoing COVID-19 pandemic.


Assuntos
Doença de Huntington , COVID-19
10.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.05.28.446065

RESUMO

A recent study proposed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hijacks the LINE-1 (L1) retrotransposition machinery to integrate into the DNA of infected cells. If confirmed, this finding could have significant clinical implications. Here, we applied deep (>50x) long-read Oxford Nanopore Technologies (ONT) sequencing to HEK293T cells infected with SARS-CoV-2, and did not find any evidence of the virus existing as DNA. By examining ONT data from separate HEK293T cultivars, we resolved the complete sequences of 78 L1 insertions arising in vitro in the absence of L1 overexpression systems. ONT sequencing applied to hepatitis B virus (HBV) positive liver cancer tissues located a single HBV insertion. These experiments demonstrate reliable resolution of retrotransposon and exogenous virus insertions via ONT sequencing. That we found no evidence of SARS-CoV-2 integration suggests such events in vivo are highly unlikely to drive later oncogenesis or explain post-recovery detection of the virus.


Assuntos
Infecções por Coronavirus , Hepatite B , Carcinoma Hepatocelular
11.
ssrn; 2021.
Preprint em Inglês | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3769210

RESUMO

Background: We assessed the safety and immunogenicity of an MF59-adjuvanted subunit vaccine for COVID-19 based on recombinant SARS-CoV-2 spike glycoprotein stabilised in a prefusion conformation by a novel molecular clamp (Sclamp).Methods: Phase 1, double-blind, placebo-controlled trial conducted in Australia (July 2020–ongoing; ClinicalTrials.gov NCT04495933). Healthy adults (18-55 years) received two doses of placebo, 5-μg, 15-μg, or 45-μg SARS-CoV-2 Sclamp, or one 45-μg dose of SARS-CoV-2 Sclamp followed by placebo, 28 days apart (n=120; 24 per group). Safety, humoral immunogenicity (ELISA, microneutralisation, pseudovirus neutralisation), and cellular immunogenicity (antigen-specific CD4+/CD8+ T-cells, antibody-secreting cells) were assessed up to 56 days after the first dose.Findings: The SARS-CoV-2 Sclamp vaccine was very well tolerated with few systemic reactions. All two-dose regimens elicited robust, broadly neutralising humoral responses. Geometric mean titres were higher than in sera from convalescent COVID-19 patients and strongly neutralised spike variants of concern, including N501Y. Moreover, humoral and cellular responses were highly correlated. However, antibodies elicited to a peptide sequence used in the molecular clamp derived from human immunodeficiency virus-1 (HIV-1) gp41 cross-reacted weakly with some HIV diagnostic screening tests.Interpretation: These first-in-human results demonstrate that a subunit vaccine comprising mammalian cell culture-derived, molecular clamp-stabilised recombinant spike protein formulated in a squalene-in-oil adjuvant elicits strong immune responses with an excellent safety profile. However, the gp41 peptide induced diagnostic interference, creates a likely barrier to widespread use and highlights the criticality of potential off-target immunogenicity during vaccine development. Studies are ongoing with alternative molecular clamp trimerisation domains to ameliorate this response.Clinical Trial Registration: ClinicalTrials.gov (NCT04495933).Funding: Coalition for Epidemic Preparedness Innovations; National Health and Medical Research Council, Queensland Government, and philanthropic sources.Declaration of Interests: KJC and DW report grants from the Coalition for Epidemic Preparedness Innovations, the National Health and Medical Research Council of Australia, and the Queensland Government, during the conduct of the study; other from ViceBio Limited, outside the submitted work; and has patents pending (AU 2018241252; BR112019019813.0; CA 3057171; CH 201880022016.9; EP 18775234.0; IN 201917038666; ID P00201909145; IL 269534; JP 2019-553883; MX/a/2019/011599; NZ 757178; KR 0-2019-7031415; SG 11201908280S; US 16/498865). JB reports personal fees from CSL Limited, during the conduct of the study, and other from CSL Limited, outside the submitted work. WZ reports grants from the National Health and Medical Research Council of Australia, the Research Grants Council of the Hong Kong Special Administrative Region, China, and the Jack Ma Foundation, during the conduct of the study. SM-H reports grants from Canarian Foundation Doctor Manuel Morales, during the conduct of the study. KJS reports grants from the the Australian Medical Research Future Fund, during the conduct of the study. AWC reports grants from the Australian Medical Research Future Fund and a National Health and Medical Research Council of Australia Career Development Fellowship, during the conduct of the study. BDW reports grants from the National Health and Medical Research Council of Australia, the Australian Medical Research Future Fund, and the Victorian State Government, during the conduct of the study. PMH reports grants from the Australian Medical Research Future Fund, during the conduct of the study. DP reports grants from the National Health and Medical Research Council of Australia, the A2 Milk Foundation, and the Jack Ma Foundation, during the conduct of the study. CR reports grants from the Coalition for Epidemic Preparedness Innovations, during the conduct of the study. PRY reports grants from the Coalition for Epidemic Preparedness Innovations, the National Health and Medical Research Council of Australia, and the Queensland Government, during the conduct of the study; grants from ViceBio Limited, outside the submitted work; and a patent issued (US 2020/0040042). FLM, Zl, DKW, PE, JAL, STMC, NM, SA, CLH, KH, PG, LH, THON, MHT, PT, JB, PCR, SN, SC, TH, KK, KS, and TPM have nothing to disclose.Ethics Approval Statement: The protocol was approved by the Alfred Health Human Research Ethics Committee (2020001376/334/20).


Assuntos
Infecções por HIV , COVID-19 , Alopecia em Áreas
12.
ssrn; 2020.
Preprint em Inglês | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3736395

RESUMO

Efforts to develop and deploy effective vaccines against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continue at pace. Here we describe rational antigen design through to manufacturability and vaccine efficacy, of a prefusion-stabilised Spike (S) protein, Sclamp. This strategy uses an orthogonal stabilisation approach compared to canonical vaccines, in combination with the licensed adjuvant MF59 (Seqirus). In mice, the Sclamp vaccine elicits high levels of neutralising antibodies, as well as broadly reactive and polyfunctional S-specific CD4+ and cytotoxic CD8+ T cells in vivo. In the Syrian hamster challenge model (n = 70), vaccination results in reduced viral load within the lung, protection from pulmonary disease, and decreased viral shedding in daily throat swabs which correlated strongly with the neutralising antibody level. The Sclamp vaccine candidate is currently completing Phase 1 clinical evaluation, in parallel with large-scale commercial manufacture for pivotal efficacy trials and potential widespread distribution.Funding: This work was funded by CEPI.Conflict of Interest: K.J.C., D.W. and P.R.Y. are inventors of the “Molecular Clamp” patent, US 2020/0040042.


Assuntos
Síndrome Respiratória Aguda Grave
13.
researchsquare; 2020.
Preprint em Inglês | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-68892.v1

RESUMO

Efforts to develop and deploy effective vaccines against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continue at pace with more than 30 candidate vaccines now in clinical evaluation. Here we describe the preclinical development of an adjuvanted, prefusion-stabilised Spike (S) protein “Sclamp” subunit vaccine, from rational antigen design through to assessing manufacturability and vaccine efficacy. In mice, the vaccine candidate elicits high levels of neutralising antibodies to epitopes both within and outside the receptor binding domain (RBD) of S, as well as broadly reactive and polyfunctional S-specific CD4+ and cytotoxic CD8+ T cells. We also show protection in Syrian hamsters, which has emerged as a robust animal model for pulmonary SARS-CoV-2 infection. No evidence of vaccine enhanced disease was observed in animal challenge studies and pre-clinical safety was further demonstrated in a GLP toxicology study in rats. The Sclamp vaccine candidate is currently progressing rapidly through clinical evaluation in parallel with large-scale manufacture for pivotal efficacy trials and potential widespread distribution.


Assuntos
Síndrome Respiratória Aguda Grave , COVID-19
14.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.06.24.169334

RESUMO

A major global effort is currently ongoing to search for therapeutics and vaccines to treat or prevent infection by the SARS-CoV-2 virus. Repurposing existing entities is one attractive approach. The heparan sulfate mimetic pixatimod is a clinical-stage synthetic sulfated compound that is a potent inhibitor of the glycosidase heparanase, and has known anti-cancer, anti-inflammatory and also antiviral properties. Here we show that pixatimod binds directly to the SARS-CoV-2 spike protein S1 receptor binding domain (RBD) and alters its conformation. Notably, this site overlaps with the known ACE2 binding site in the S1 RBD. We find that pixatimod inhibits binding of recombinant S1 RBD to Vero cells which express the ACE2 receptor. Moreover, in assays with three different isolates of live SARS-CoV-2 virus we show that pixatimod effectively inhibits viral infection of Vero cells. Importantly, its potency is well within its safe therapeutic dose range. These data provide evidence that pixatimod is a potent antiviral agent against SARS-CoV-2. Together with its other known activities this provides a strong rationale for its clinical investigation as a new multimodal therapeutic for the current COVID-19 pandemic.


Assuntos
Neoplasias , COVID-19
15.
medrxiv; 2020.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2020.05.11.20098459

RESUMO

SARS-CoV-2, the pandemic coronavirus that causes COVID-19, has infected millions worldwide, causing unparalleled social and economic disruptions. COVID-19 results in higher pathogenicity and mortality in the elderly compared to children. Examining baseline SARS-CoV-2 cross-reactive coronavirus immunological responses, induced by circulating human coronaviruses, is critical to understand such divergent clinical outcomes. The cross-reactivity of coronavirus antibody responses of healthy children (n=89), adults (n=98), elderly (n=57), and COVID-19 patients (n=19) were analysed by systems serology. While moderate levels of cross-reactive SARS-CoV-2 IgG, IgM, and IgA were detected in healthy individuals, we identified serological signatures associated with SARS-CoV-2 antigen-specific Fc{gamma} receptor binding, which accurately distinguished COVID-19 patients from healthy individuals and suggested that SARS-CoV-2 induces qualitative changes to antibody Fc upon infection, enhancing Fc{gamma} receptor engagement. Vastly different serological signatures were observed between healthy children and elderly, with markedly higher cross-reactive SARS-CoV-2 IgA and IgG observed in elderly, whereas children displayed elevated SARS-CoV-2 IgM, including receptor binding domain-specific IgM with higher avidity. These results suggest that less-experienced humoral immunity associated with higher IgM, as observed in children, may have the potential to induce more potent antibodies upon SARS-CoV-2 infection. These key insights will inform COVID-19 vaccination strategies, improved serological diagnostics and therapeutics.


Assuntos
COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA